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Abstract
Let μ be the self-avoiding walk connective constant on Z

d . We show that the
asymptotic expansion for βc = 1/μ in powers of 1/(2d) satisfies Borel-type
bounds. This supports the conjecture that the expansion is Borel summable.
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Mathematics Subject Classification: 60K35, 82B41

1. Introduction

Let Z
d denote the hypercubic lattice, with nearest neighbour edges. A self-avoiding walk of

length n is a sequence of points ω0, ω1, . . . , ωn in Z
d such that |ωi − ωi+1| = 1 and for i �= j ,

ωi �= ωj . Let cn denote the number of self-avoiding walks, up to translation invariance, of
length n on Z

d . It is well known that the limit μ(d) = limn→∞ c
1/n
n exists [1]; the limit is

called the connective constant. Fisher and Gaunt calculated that [2]

μ = 2d − 1 − 1/(2d) − 3/(2d)2 − 16/(2d)3 − 102/(2d)4 − · · · .
However, their calculation is somewhat mysterious. Firstly, they leave open the question of
whether or not the expansion can be continued to higher orders of 1/d. Secondly, even though
the error term ‘. . .’ is left uncontrolled, numerical extrapolation techniques yield surprisingly
accurate estimates for μ.

Expansions in powers of 1/d have been developed for many other models in statistical
physics, such as the Ising model [2], percolation [3], lattice animals [4] and the n-vector model
[5]. Finding the coefficients of the expansion is normally computationally intensive. It is
often even more difficult to determine the basic properties of the expansion. What is the radius
of convergence? Is it an asymptotic expansion? Can the expansion be interpreted as a Borel
sum?

The self-avoiding walk is most easily understood in high dimensions. As d → ∞, paths
in Z

d with large loops become relatively rare. It is therefore useful to consider a walk with only
local self-avoidance. Say that ω0, . . . , ωn is a memory-τ self-avoiding walk if ω(i) �= ω(j)
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http://dx.doi.org/10.1088/1751-8113/43/23/235001
mailto:graham@dma.ens.fr
http://stacks.iop.org/JPhysA/43/235001


J. Phys. A: Math. Theor. 43 (2010) 235001 B T Graham

for 0 < |i − j | � τ . Let c(τ)
n denote the number of n-step memory-τ walks, up to translation

invariance, and let μτ (d) = limn→∞(c(τ)
n )1/n. Using memory-4 self-avoiding walks as a

starting point (taking into account loops of size 2 and 4) Kesten showed that [6]

μ(d) = 2d − 1 − 1/(2d) + O(1/d2).

By considering finite-memory self-avoiding walks with longer memories, the order of the error
bound can be improved. However, not only is this method extremely computationally taxing,
it also provides no guarantee that the resulting expansion will only contain integer powers
of d.

The series expansion for μ was placed on a much firmer footing by Hara and Slade
using the lace expansion [7]. The lace expansion is a powerful technique for exploring the
properties of the self-avoiding walk in dimensions d > 4; we refer the reader to [8] for a
recent introduction. Hara and Slade showed that the connective constant μ has an asymptotic
expansion in integer powers of 1/(2d) to all orders, with all the coefficients taking integer
values.

We will actually phrase their result in terms of the series expansion for the reciprocal
of μ(d). The quantity βc = 1/μ(d) is the radius of convergence of the self-avoiding walk
susceptibility χ(z) = ∑

cnz
n. For convenience, set s = 1/(2d). Hara and Slade showed that

there are constants (αn) such that for M = 1, 2, . . . , [7],

βc(s) =
M−1∑
n=1

αns
n + O(sM). (1.1)

They also verified rigorously that the first six terms in the expansion match the exact calculation
of Fisher and Gaunt.

The lace expansion can be used to automate the process of calculating the coefficients
of the asymptotic expansion for βc and μ. The computational complexity of the process is
reduced using a combinatorial trick known as the two-step method. Using a supercomputer to
implement the two-step method, the first 13 coefficients of βc have been found [9],

1, 1, 2, 6, 27, 157, 1065, 7865, 59 665, 422 421, 1991 163,−16 122 550, −805 887 918.

(1.2)

It is not known, but it is widely believed, that the radius of convergence of the expansion for
βc is zero. We will show that the partial sums satisfy Borel-type bounds. Borel summability
raises the prospect of calculating μ from the series expansion even if the radius of convergence
is zero.

Theorem 1.3. There exists a constant C1 such that for all d∣∣∣∣∣βc(s) −
M−1∑
n=1

αns
n

∣∣∣∣∣ � CM
1 sMM!, M = 1, 2, . . . . (1.3)

The motivation for theorem 1.3 is discussed in section 2. In section 4, we use the lace
expansion to derive a formula for the αn. This formula is used in section 5 to control the
growth of the αn as n → ∞. In section 6, we consider the diagrammatic estimates for the lace
expansion. Finally, in section 7 we prove theorem 1.3.

2. Borel summability and the spherical model

In light of theorem 1.3, it is natural to ask if βc can be recovered from αn by means of a Borel
sum. Let B denote the Borel transform of the asymptotic expansion for βc; B is well defined
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(see lemma 5.1) in a neighbourhood of zero by

B(t) =
∞∑

n=1

αnt
n/n!.

We conjecture that B can be extended analytically to a neighbourhood of the positive real axis,
and that βc(s) is equal to the Borel sum

∑
Borel

αns
n := 1

s

∫ ∞

0
e−t/sB(t) dt.

There are two reasons for making this conjecture. Firstly, with R > 0, let CR := {z ∈ C :
Re z−1 > R−1} denote the open disc in C with the centre R/2 and the diameter R. Suppose that
βc can be extended to an analytic function on CR such that (1.3) holds for all s ∈ CR . Under
this assumption, the Borel sum is well defined in CR and equal to βc [10]. Unfortunately, it is
not clear how to extend βc to an analytic function on CR. Interpreting the Borel sum remains
an open problem.

Secondly, there is the case of the spherical model, which is a spin system defined on Z
d .

There is a surprising connection between the spherical model and self-avoiding walk; both are
identified with limits of the n-vector models (also known as the O(n) model). The n-vector
model is defined for positive integer values of n; for example, the Ising model corresponds
to n = 1. The model has been studied extensively by scientists; many aspects of the models
have been solved ‘exactly’ [11]. De Gennes ([12] and [1, section 2.3]) showed that in an
abstract sense, the self-avoiding walk can be viewed as the ‘limit’ of the n-vector model as
n → 0. Stanley showed that as n → ∞, the free energy of the n-vector model approaches the
spherical model free energy [13]. The spherical model is thus said to be the limit as n → ∞
of the n-vector model.

There is an exact solution Kc(d) for the critical point of the spherical model. Gerber and
Fisher show that Kc(d) can be written as a 1/d expansion [5]; it is a rare example of a 1/d

expansion about which a great deal is known. They prove that while the radius of convergence
of the expansion is zero, the expansion can be interpreted as a Borel sum [5, (2.14)]:

Kc(d) =
∑
Borel

Kn

(2d)n
with Borel transform

∞∑
n=1

Knx
n

n!
.

Note that the signs of the coefficients (Kn) oscillate. The first 12 coefficients are positive, the
next 8 are negative, the next 9 are positive; the pattern of signs goes

12, 8, 9, 9, 9, 9, 9, 9, 9, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 9, 9, 9, 9, 9, . . . .

This oscillation is related to the fact that the Borel transform has no poles on the positive real
axis. We saw in (1.2) that the coefficients αn for the self-avoiding walk also show a change of
sign. The first 11 are positive; α12 and α13 are negative.

3. Notation

Given a generating function φ(β), we will write [βn]φ(β) to denote the coefficient of βn.
We will refer to the fact that (n/e)n � n! � nn for n = 0, 1, 2 . . . as Stirling’s

approximation.
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4. From lace expansions to asymptotic expansions

The lace expansion can be thought of as a sum of inclusion/exclusion terms. For a derivation
of the lace expansion, see [8, section 3.2]. The finite memory self-avoiding walks will play
a vital role in the proof of theorem 1.3. For a derivation of the lace expansion for memory-τ
self-avoiding walk, see [14].

A lace of type N and length a is a sequence of open intervals (s1, t1), . . . , (sN , tN) such
that

(i) si and ti are integers with 0 < ti − si � τ ,
(ii) s1 = 0 and tN = a,

(iii) for i = 1, . . . , N − 1, (si, ti) intersects (si+1, ti+1), and
(iv) if |i − j | > 1, (si, ti) and (sj , tj ) are disjoint.

For example, (0, 4), (3, 5), (4, 6) is a lace if τ � 4.
A simple walk ω(0), ω(1), . . . , ω(a) starting from 0 is said to be compatible with the

lace (s1, t1), . . . , (sN , tN) if each interval corresponds to a loop:

ω(si) = ω(ti) for i = 1, . . . , N,

and if certain self-avoidance constraints are satisfied.

(i) ω(0), . . . , ω(t1 − 1) is a memory-τ self-avoiding walk.
(ii) ω(1), . . . , ω(t2 − 1) is a memory-τ self-avoiding walk (for N � 2).

(iii) ω(ti−2), . . . , ω(ti − 1) is a memory-τ self avoiding walk (for 3 � i � N ).

Let π(N)
a (x; τ) count the number of a-step simple walks from 0 to x that are compatible

with a memory-τ type-N lace. The lace expansion is defined as

	β(x; τ) =
∞∑

N=1

(−1)N	
(N)
β (x; τ) where 	

(N)
β (x; τ) =

∞∑
a=N+1

π(N)
a (x; τ)βa.

The Fourier transform for functions f : Z
d → R is given by

f̂ (k) =
∑

x

f (x) e−ik·x, k ∈ [−π, π ]d .

We will write π̂ (N)
a (k; τ), 	̂

(N)
β (k; τ) and 	̂β(k; τ) for the Fourier transforms of π(N)

a (x; τ),

	
(N)
β (x; τ) and 	β(x; τ), respectively.

The starting point in our analysis will be [7, (2.2)]. Let βτ = 1/μτ , and take β∞ = βc.
When d is sufficiently large, for τ finite and τ = ∞,

βτ = s(1 − 	̂βτ
(0; τ)). (4.1)

In this section, we will use this formula to derive series expansions for βτ .
The definition of the lace expansion respects the symmetries of the underlying lattice.

There are 2dd! ways of choosing an ordered orthonormal basis for R
d from the set Z

d . Each
simple walk in Z

d with dimensionality D is equivalent to 2d(2d − 2) · · · (2d − 2D + 2) other
walks under the action of this group of symmetries.

Let fτ (a,N,D) count the number of equivalence classes of the set of simple walks in
Z

D that have dimensionality D, length a, and are compatible with memory-τ laces of type N.
If a < 2D, fτ (a,N,D) = 0. Therefore, we can write the number of walks compatible with
memory-τ laces of length a and type N in Z

d as a polynomial in powers of s−1 = 2d:
�a/2�∑
D=1

fτ (a,N,D)2d(2d − 2) · · · (2d − 2D + 2) =
a−1∑

b=�a/2	
ca,b,N sb−a.

4
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Let I = {(a, b) : b = 1, 2, . . . ; a = b + 1, . . . , 2b} and set

ca,b =
∞∑

N=1

(−1)N+1ca,b,N , (a, b) ∈ I.

The ca,b depends implicitly on τ , but ca,b is fixed once τ � a. Using this notation to rewrite
(4.1) yields a formal power series,

βτ = s

⎡
⎣1 +

∑
(a,b)∈I

βa
τ ca,bs

b−a

⎤
⎦

= s
[
1 + β2

τ c2,1s
−1 + β3

τ c3,2s
−1 + β4

τ (c4,3s
−1 + c4,2s

−2) + · · · ]. (4.2)

Plugging ‘βτ = 0’ into the right-hand side gives ‘βτ = s’. Taking ‘βτ = s’ and plugging it
back into the right-hand side then gives ‘βτ = s + c2,1s

2 + (c3,2 + c4,2)s
3 + · · ·’; iterating in this

way yields a series expansion for βτ :

βτ =
∞∑

n=1

αn,τ sn = s + c2,1s
2 +

(
2c2

2,1 + c3,2 + c4,2
)
s3 + · · · .

When τ = ∞, the αn,τ are exactly the αn that appear in (1.1). Note that the formulae generated
for the αn,τ ,

α1,τ = 1, α2,τ = c2,1, α3,τ = 2c2
2,1 + c3,2 + c4,2, . . .

only depend on τ through the values of the ca,b.

Lemma 4.3. With Sn := {(na,b) ∈ N
I :

∑
I bna,b = n − 1},

αn,τ =
∑

(na,b)∈Sn

[∑
I ana,b

]
![∏

I na,b!
][

1 +
∑

I (a − 1)na,b

]
!

∏
I

c
na,b

a,b .

The big 
 in the formula for αn,τ is a sum indexed by the elements of the finite set Sn; each
element (na,b) of Sn is a sequence indexed by I.

It is a corollary of lemma 4.3 that αn,τ = αn if the memory τ � 2n − 2. This follows
from the definition of Sn. The formula for αn,τ only depends on ca,b with b � n − 1. If
(a, b) ∈ I and b � n − 1, then a � 2n − 2. Recall that ca,b is defined in terms of laces (and
the corresponding compatible walks) of length a.

Proof of lemma 4.3. Let φ(β) = 1 +
∑

I ca,bβ
asb−a . Setting β = ∑∞

n=1 αn,τ s
n, (4.2)

becomes
β

φ(β)
= s.

The Lagrange–Bürmann series reversion formula [15, theorem 1.2.4] states that

β =
∞∑

k=1

sk

k
[βk−1]φ(β)k.

Applying the formula yields

∞∑
n=1

αn,τ s
n =

∞∑
k=1

sk

k
[βk−1]

(
1 +

∑
I

ca,bβ
asb−a

)k

. (4.4)

5
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Let Tk = {(na,b) ∈ N
I :

∑
I na,b � k}; by the multinomial theorem,(

1 +
∑

I

ca,bβ
asb−a

)k

=
∑

(na,b)∈Tk

k![∏
I na,b!

](
k − ∑

I na,b

)
!

∏
I

[
ca,bβ

asb−a
]na,b

.

Extracting the coefficient of βk−1 from the right-hand side leaves only the terms corresponding
to (na,b) in Uk := {(na,b) ∈ Tk : k − 1 = ∑

I ana,b}. From (4.4) we obtain
∞∑

n=1

αn,τ s
n =

∞∑
k=1

sk

k

∑
(na,b)∈Uk

k![ ∏
I na,b!

](
k − ∑

I na,b

)
!

∏
I

[ca,bs
b−a]na,b

and so

αn,τ = [sn]
∞∑

k=1

∑
(na,b)∈Uk

sk(k − 1)![ ∏
I na,b!

](
k − ∑

I na,b

)
!

∏
I

[ca,bs
b−a]na,b .

Extracting the coefficient of sn on the right-hand side leaves only the terms with n =
k +

∑
I (b − a)na,b. By the definition of Uk, these are the terms with (na,b) ∈ Sn. �

5. Factorial bounds on (αn,τ )

We can use lemma 4.3 to bound the coefficients (αn,τ ) of the asymptotic expansions.

Lemma 5.1. There is a constant C2 such that |αn,τ | � Cn
2 n!.

This is achieved by bounding |ca,b| in terms of b.

Lemma 5.2. Let cb = ∑2b
a=b+1 |ca,b|. There is a constant C3 such that cb � Cb

3b!.

Proof. The numbers (ca,b) are defined in terms of laces with the length a:

|ca,b| �
�a/2�∑

D=a−b

∞∑
N=1

fτ (a,N,D) × |[sb−a]s−1(s−1 − 2) · · · (s−1 − 2D + 2)|.

The number of walks of length a in Z
D is (2D)a , so that

∞∑
N=1

fτ (a,N,D) � (2D)a

2DD!
.

The absolute value of [sb−a]s−1(s−1 − 2) · · · (s−1 − 2D + 2) is at most

[sb−a](s−1 + 2D)D = (2D)D+b−a

(
D

a − b

)
, D = a − b, . . . , �a/2�.

Therefore (as D � �a/2� � b),

|ca,b| �
�a/2�∑

D=a−b

(2D)a

2DD!
(2D)D+b−a

(
D

a − b

)
=

�a/2�∑
D=a−b

2bDD+b

(a − b)!(D − a + b)!

� (1 + �a/2� − (a − b))
2bb2b

(a − b)!(2b − a)!
.

By Stirling’s approximation:

b2b

(a − b)!(2b − a)!
� (b!eb)2

(a − b)!(2b − a)!
�

(
b

a − b

)
e2bb! � 2be2bb!.

6
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Hence for some constant C3,

cb =
2b∑

a=b+1

|ca,b| �
2b∑

a=b+1

(1 + �a/2� − (a − b)) · 2b · 2be2bb! � Cb
3b!.

�

Before we can prove lemma 5.1, we need a bound on how a power series with factorial
coefficients behaves under exponentiation.

Lemma 5.3. Let φ(β) ≡ ∑∞
k=0 k!βk . Then

[βk]φ(β)n � k!
k∏

j=1

(1 + (n − 1)/j 2) � 6nk!.

Before proving lemma 5.3, we will state a corollary that will be needed in section 7.

Corollary 5.4. With C being a positive constant, let ψ(β) ≡ ∑∞
k=1 Ckβkk! For k � n,

[βk]ψ(β)n � (6C)k(k − n)!.

Proof of corollary 5.4. For all m, (m + 1)! � 2mm! and so

[βk]ψ(β)n � [βk](Cβφ(2Cβ))n = Ck2k−n[βk−n]φ(β)n � Ck2k−n6n(k − n)!. �

Proof of lemma 5.3. Let l1, . . . , ln denote non-negative integers. The first inequality is
equivalent to

∑
l1+...+ln=k

n∏
i=1

li! � k!
k∏

j=1

(1 + (n − 1)/j 2). (5.5)

We will show this by induction in k. For convenience, (5.5) can be written in terms of a
multinomial random variable Xk ≡ (

Xk
1, . . . , X

k
n

) ∼ Multinomial(k; 1/n, . . . , 1/n):

nk
E

((
k

Xk

)−2
)

�
k∏

j=1

(1 + (n − 1)/j 2),

(
k

Xk

)
= k!

Xk
1! . . . Xk

n!
.

For the inductive step, we construct Xk+1 from Xk by adding 1 to one of Xk
1, . . . , X

k
n uniformly

at random. Let e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, . . .), and so on. The inductive step is then

nE

[(
k + 1

Xk+1

)−2
]

= E

n∑
i=1

(
k + 1

Xk + ei

)−2

= E

n∑
i=1

(
k + 1

Xk
i + 1

)−2 (
k

Xk

)−2

� (k + 1)2 + (n − 1)

(k + 1)2
E

[(
k

Xk

)−2
]

.

The inequality is the result of replacing
∑n

i=1

(
k+1

Xk
i +1

)−2
with its supremum over the range of

Xk.
The second inequality in the statement of lemma 5.3 follows from a well-known result of

Euler:
∑∞

j=1 1/j 2 = π2/6, and so

log
k∏

j=1

(
1 + (n − 1)/j 2

)
�

k∑
j=1

n − 1

j 2
< (n − 1)π2/6 < log(6n). �

7
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Proof of lemma 5.1. For (a, b) ∈ I , a � 2b. By lemma 4.3,

|αn,τ | �
∑

(na,b)∈Sn

( ∑
ana,b

)
!∏

na,b!
(
1 +

∑
(a − 1)na,b

)
!

∏
|ca,b|na,b

�
∑

(na,b)∈Sn

(2n − 2)!∏
na,b!

(
2n − 1 − ∑

na,b

)
!

∏
|ca,b|na,b

� 1

2n − 1
[βn−1]

(
1 +

∞∑
b=1

cbβ
b

)2n−1

.

By lemma 5.2 and lemma 5.3, |αn| � 62nCn
3 n!. �

6. Diagrammatic estimates

The walks compatible with type-N laces can be represented by diagrams containing N
segments, with each segment building a new loop. For N = 1, 2, 3, 4 and 5 we have

Such pictures have inspired a number of simple yet effective bounds on the lace expansion. In
particular, there is a number CHS such that for sufficiently large d , for all τ , [7]

	̂
(N)
βτ

(0; τ) � (sCHS)
N . (6.1)

The method of diagrammatic estimates can be used to bound π̂ (N)
a (0; τ), the number of walks

of length a compatible with type-N laces.

Lemma 6.2. There is a constant C4 such that

π̂ (N)
a (0; τ) � [βa]

(
τ/2∑
n=1

Cn
4 s−nn!β2n(1 + s/β)

)N

.

Proof. Let f (n, x) = n c(0)
n (x), where c(0)

n (x) denotes the number of simple walks from 0
to x of length n. Let g(n) = supx f (n, x). The loops corresponding to memory-τ laces have
length at most τ . Consider the function

Gτ(β) =
τ∑

n=1

βng(n).

We will show, by the method of diagrammatic estimates, that

π̂ (N)
a (0; τ) � [βa] (Gτ (β))N . (6.3)

Let (s1, t1), . . . , (sN , tN) represent a typical lace of type N and length a. Let t0 = 0. Note that

(i) t1 − t0, t2 − t1, . . . , tN − tN−1 ∈ {1, 2, . . . , τ }, and
(ii) 0 � si+1 − ti−1 < ti − ti−1 for i = 1, . . . , N − 1.

Let ω = (ω(0), ω(1), . . . , ω(a)) represent a typical simple walk from 0 of length a. Then

π̂ (N)
a (0; τ) =

∑
(ti )

∑
(si )

∣∣{ω : ω is compatible with (s1, t1), . . . , (sN , tN)}∣∣.
The first sum is over the values of t1, . . . , tN compatible with (i). The second sum is over the
values of s1, . . . , sN compatible with (ii). Take t1, . . . , tN to be fixed. Suppose that for some

8
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k = 1, . . . , N , we have fixed s1, . . . , sk and ω(1), . . . , ω(tk−1). How many ways are there to
pick sk+1 and ω(tk−1 + 1), . . . , ω(tk)?

The choice of ω(tk−1 + 1), ω(tk−1 + 2), . . . , ω(tk) is constrained by the requirement that
ω(tk) = ω(sk). The number of choices for the value of sk+1 is tk − tk−1. The total number of
choices is at most g(tk − tk−1). Therefore,

π̂ (N)
a (0; τ) �

∑
(ti )

g(t1 − t0)g(t2 − t1) · · · g(tN − tN−1),

and (6.3) follows.
Let C4 = 1000. The lemma follows from (6.3) when we show that for n = 1, . . . , τ ,

g(n) = sup
x

f (n, x) � [βn]
τ/2∑
n=1

Cn
4 s−nn!β2n(1 + s/β) = C

�n/2	
4 s−�n/2��n/2	!.

First consider n = 2m � 2d. A walk from 0 to 0 in Z
d of length 2m has dimensionality at

most m. The number of ways to pick an m-dimensional subspace of Z
d is at most dm/m!.

Using Stirling’s formula

f (2m, 0) � (2m)
dm

m!
(2m)2m � Cm

4 s−mm!.

For x �= 0, let i � 1 denote the dimensionality of x. The number j of extra dimensions a walk
from 0 to x of length 2m � 2d can explore is at most m − 1, and the total dimensionality of
the walk is at most i + j � 2m:

f (2m, x) � (2m)
dm−1

(m − 1)!
(2 · 2m)2m � Cm

4 s1−mm!.

Now consider n = 2m + 1 for 1 � m < d. Summing over the neighbours of x,
c
(0)
2m+1(x) = ∑

y∼x c
(0)
2m(y). At most 1 of the 2d neighbours of x can be 0, hence

f (2m + 1, x) �
(

2m + 1

2m

) [
Cm

4 s−mm! + (2d − 1) · Cm
4 s1−mm!

]
� Cm+1

4 s−m(m + 1)!.

Lastly, if n � 2d, c(0)
n (x) � (2d)n. Again by Stirling’s formula

f (n, x) � n(2d)n � C
�n/2	
4 s−�n/2��n/2	!. �

7. Proof of theorem 1.3

It is well known that d � μ � 2d, and hence s � βc � 2s. Let C5 ∈ [0, C−1
2 ] and suppose

that C1 � 10C2/C5. Then for s � C5/M , inequality (1.3) holds simply by lemma 5.1. We
will show by induction that for some positive constants C5 and C6, for k = 0, 1, 2, . . . and
s � C5/k,

βc =
k∑

n=1

αns
n + Ek+1s

k+1 with |Ek+1| � Ck+1
6 (k + 1)!. (7.1)

Theorem 1.3 follows from (7.1) by taking C1 = max{C6, 10C2/C5}.
To begin the induction process, note that E1 = βc/s ∈ [0, 2], so (7.1) holds for k = 0

if C6 � 2. As the proof progresses, we will impose a number of conditions on the pair of
constants (C5, C6). The reader will see that all these conditions can be satisfied by first taking
C6 � 1 and then taking C5  C−3

6 .
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Assume inductively that (7.1) holds for k = 1, . . . , M − 1. Fix s � C5/M . We need to
show that

|EM+1| � CM+1
6 (M + 1)!.

We will define (Ai)
4
i=1 such that

EM+1s
M =

4∑
i=1

Ai, |Ai | � 1

4
sMCM+1

6 (M + 1)!. (7.2)

We will now use the lace expansion. We have assumed that s = 1/(2d) � C5/M . If C5 is
sufficiently small, (4.1) holds for all τ .

A type-N memory-τ lace consists of N overlapping intervals. Each interval has length
at most τ , so the total length is at most Nτ . It is therefore easier to use the finite memory
version of the lace expansion. Recall that if τ � 2M − 2, the first M coefficients of the series
expansions for βc and βτ agree: for n = 1, . . . ,M , αn = αn,τ . Let τ = 2M . By [6, theorem
1] there is a constant CK such that

∀s � 1/(52M), 0 � βc − βτ � sM+2CM
K M!. (7.3)

If C6 � CK, then A1 := βc − βτ satisfies (7.2). Let Eτ
M = EM − A1. Then

βτ =
M−1∑
n=1

αns
n + Eτ

MsM. (7.4)

By (4.1), we must now choose A2, A3, A4 such that

A2 + A3 + A4 +
M∑

n=1

αns
n−1 = 1 − 	̂βτ

(0; τ). (7.5)

With reference to the diagrammatic estimate (6.1), let

A2 = −
∞∑

N=M+1

(−1)N	̂
(N)
βτ

(0; τ).

If C5 � 1/(2CHS) and C6 � 2CHS, then A2 satisfies (7.2).
Let A3 match the terms generated on the right-hand side of (7.5) by the laces of length

a � 2M and type N � M ,

A3 = −
M∑

N=1

(−1)N
2MN∑
a=2M

π̂(N)
a (0; τ)βa

τ .

By lemma 6.2,

|A3| �
M∑

N=1

2MN∑
a=2M

βa
τ [βa]

(
M∑

n=1

Cn
4 s−nn!β2n(1 + s/β)

)N

�
M∑

N=1

(1 + s/βτ )
N

2MN∑
a=2M

βa
τ [βa]

(
M∑

n=1

Cn
4 s−nn!β2n

)N

.

Setting x = β2, the right-hand side is equal to

M∑
N=1

(1 + s/βτ )
N

MN∑
a=M

(
C4Mβ2

τ s
−1

)a
[xa]

(
M∑

n=1

n!xn/Mn

)N

.

10
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If C5 is small and C6 is large, then (1 + s/βτ )C4Mβ2
τ s

−1 � C6e
−1Ms � 1, and

|A3| �
M∑

N=1

MN∑
a=M

(C6e
−1Ms)a[xa]

(
M∑

n=1

xnn!/Mn

)N

� (C6e
−1Ms)M

M∑
N=1

(
M∑

n=1

n!/Mn

)N

� 1

4
sMCM+1

6 (M + 1)!.

By the process of elimination, A4 is now defined by

A4 +
M∑

n=1

αns
n−1 = 1 −

M∑
N=1

(−1)N
2M−1∑
a=2

π̂ (N)
a (0; τ)βa

τ . (7.6)

Substitute (7.4) into the right-hand side of (7.6); by lemma 4.3, we can cancel the powers of s
below sM:

A4 = −
∞∑

n=M

sn[sn]
M∑

N=1

(−1)N
2M−1∑
a=2

π̂ (N)
a (0; τ)

(
M−1∑
n=1

αns
n + Eτ

MsM

)a

.

Recall that cb := ∑2b
a=b+1 |ca,b|. As α1 = 1 and a � 2b,

|A4| �
∞∑

n=M

sn[sn]
2M−1∑
a=2

a−1∑
b=�a/2	

|ca,b|sb−a

(
M−1∑
k=1

|αk|sk + |Eτ
M |sM

)a

�
∞∑

n=M

sn[sn]
2M−2∑
b=1

cbs
−b

(
M−1∑
k=1

|αk|sk + |Eτ
M |sM

)2b

. (7.7)

Expand the ( · )2b terms on line (7.7) and then carry out the sum from n = M to ∞: we will
split the resulting terms into three groups.

(i) The terms sncb|αi1 ||αi2 | · · · |αi2b
| with M � n � 2M − 2.

(ii) The terms sncb . . . with M � n � 2M − 2 that are not in group (i) because they contain
an |Eτ

M | term.
(iii) The terms sncb . . . with n � 2M − 1.

Thinking of (4.2) as a recursive formula, lemma 5.1 is equivalent to the bound

|αn+1| �

∣∣∣∣∣∣[sn]
∞∑

b=1

cbs
−b

( ∞∑
k=1

|αk|sk

)2b
∣∣∣∣∣∣ � Cn+1

2 (n + 1)!.

The contribution from the first group is therefore less than

2M−2∑
n=M

snCn+1
2 (n + 1)!. (7.8)

The contribution of the second group is

2M−2∑
n=M

sn[sn]
n+1−M∑

b=1

cbs
−b × (2b)

(
M−1∑
k=1

|αk|sk

)2b−1 ∣∣Eτ
M

∣∣sM. (7.9)

For k = 1, . . . ,M , define α̂k by

âks
k = |αk|sk + . . . + |αM−1|sM−1 +

∣∣Eτ
M

∣∣sM.

11
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We claim that the contribution of the third group is at most

s2M−1[x2M−1]
2M−2∑
b=1

cbx
−b

(
M∑

k=1

α̂kx
k

)2b

. (7.10)

By having the α̂kx
k in the ( · )2b term, we catch all the terms in the third group while extracting

only the coefficient of x2M−1. [For example if M = 10, the term s28c2α6α7α8α9 is accounted
for by the term c2s

−2(α̂6s
6)(α̂7s

7)(α̂7s
7)(α̂1s) =

c2s
−2(|α6|s6 + · · ·)(|α7|s7 + · · ·)(. . . + |α8|s8 + · · ·)(. . . + |α9|s9 + · · ·)

generated by (7.10).]
The absolute value of A4 is now bounded by the sum of three intimidating expressions,

(7.8)–(7.10). However, αn are controlled by lemma 5.1, and cb are controlled by lemma 5.2.
By the inductive assumption and (7.3), if C6 � CK then |Eτ

M | � 2CM
6 M!. If C6 � C2, we

have α̂k � (2C6)
kk!. Substituting in these bounds and applying corollary 5.4 gives

|A4| �
2M−2∑
n=M

snCn+1
2 (n + 1)!

+
2M−2∑
n=M

sn

n+1−M∑
b=1

(Cb
3b!) (2b) (6 · C2)

n+b−M(n + 1 − b − M)!
(
2CM

6 M!
)

+ s2M−1
2M−2∑
b=1

(Cb
3b!)(6 · 2C6)

2M+b−1(2M − b − 1)!. (7.11)

Let k = n − M . On the first line of (7.11), the (n + 1)! is less than (M + 1)!(2M)k; this turns
the summand into a geometric series. On the second line, the summand (of the sum over b) is
maximized by b = k + 1, and the sum contains k + 1 terms. On the third line, the summand is
maximized by b = 2M − 2, and the sum contains 2M − 2 terms. It follows that

|A4| � sMCM+1
2 (M + 1)!

M−2∑
k=0

(s · C2 · 2M)k

+ 2sMCM
6 M!

M−2∑
k=0

sk(k + 1)
(
Ck+1

3 (k + 1)!
)
(2k + 2)(6C2)

2k+1

+ s2M−1(2M − 2)
(
C2M−2

3 (2M − 2)!
)
(12C6)

4M−3.

To complete the proof of theorem 1.3, we simply need to check that with s � C5/M and
M � 1, |A4| � 1

4 sMCM+1
6 (M + 1)!.

If C5 is small, the two sums are dominated by their first terms; in particular, we can
assume that each sum amounts to no more than twice the value of the summand when k = 0.
As (2M − 2) · (2M − 2)! � (M + 1)!(2M)M−2,

|A4|
sMCM+1

6 (M + 1)!
� 2

(
C2

C6

)M+1

+
48C2C3

C6(M + 1)
+

6
(
124 · 2MsC2

3C
3
6

)M−1

C6M
.

The right-hand side is smaller than 1/4 if C6 � C2C3 and C5  C−2
3 C−3

6 .
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